Processing math: 100%
သာသနာနှစ် ၂၅၆၈ ခု၊ မြန်မာနှစ် ၁၃၈၆ ခု၊ နှောင်းတန်ခူး လဆန်း ၆ ရက်၊ ကြာသပတေးနေ့။

Search This Blog

Sunday, January 13, 2013

Changing sampling rate using quadratic regression

signal တစ်ခုရဲ့ sampling rate ကို 333Hz ကနေ 5000Hz ကို ပြောင်းဖို့ အတွက် လုပ်ကြည့်ထားပါတယ်။ ပိုမို ချောမွေ့တဲ့ ရလာဒ် ရချင်တာမို့ ပုံမှန် zero order hold (ZOH) ကို သုံးမယ့်အစား second order hold ကို သုံးကြည့်ထားတာပါ။ ဒီမှာ sampling rate ကို တင်ဖို့လုပ်ထားပေမယ့်၊ ဒီနည်းကို down sampling လုပ်ဖို့လည်း သုံးလို့ရပါတယ်။ အခြား ဖြစ်နိုင်ချေတွေကတော့ noise ကို phase delay မရှိပဲ filter လုပ်တဲ့ဟာမျိုးတွေ အတွက်လည်း သုံးလို့ ရနိုင်ပါတယ်။ real-time application တွေအတွက်ပေါ့။
Approach 1: Quadratic regression
Quadratic ဖန်ရှင်တစ်ခုကို အောက်ပါအတိုင်း သတ်မှတ်နိုင်ပါတယ်။

f=w0+w1x+w2x2


အနည်းဆုံး ဖြစ်အောင် လုပ်မယ့် cost function ကို အောက်ကလို သတ်မှတ်မှာပါ။

J(w)=12ni=1(yifi)2

J(w)=12ni=1(yiw0+w1xi+w2x2i)2


ဒါဆို Optimal weights တွေကို differentiate လုပ်ပြီးသုည ညီလိုက်ပြီး ရှာနိုင်ပါတယ်။

J(w)w0=0

ni=1(yiw0+w1xi+w2x2i)=0

w0ni=11+w1ni=1xi+w2ni=1x2i=ni=1yi


w1 နဲ့ w2 ကိုလည်း အဲဒီလိုပဲ ရှာလိုက်မယ် ဆိုရင် အောက်အတိုင်း ထပ်ရလာပါမယ်။

w0ni=1xi+w1ni=1x2i+w2ni=1x3i=ni=1yixi

w0ni=1x2i+w1ni=1x3i+w2ni=1x4i=ni=1yix2i


အဲဒီ equation သုံးခုကို မေ့ထရစ် ပုံစံ နဲ့ အောက်ပါအတိုင်း ရေးလို့ရပါတယ်။

[ni=11ni=1xini=1x2ini=1xini=1x2ini=1x3ini=1x2ini=1x3ini=1x4i][w0w1w2]=[ni=1yini=1yixini=1yix2i]

AW=B

W=A1B


Approach 2: Three equations
တကယ်တော့ ဒီကိစ္စမှာ နောက်ဆုံး အမှတ် ၃ ခုကိုပဲ သုံးလိုက်ရင်ရတဲ့ အတွက်၊ ညီမျှခြင်း သုံးကြောင်း ကို အောက်က အတိုင်း တစ်ခါတည်း ချရေးလို့လည်း ရပါတယ်။


y1=w0+w1x1+w2x21

y2=w0+w1x2+w2x22

y3=w0+w1x3+w2x23

[1x1x211x2x221x3x23][w0w1w2]=[y1y2y3]

AW=B

W=A1B


Approach 3: Two equations အကယ်၍ x1=-1, x2=0, နဲ့ x3=1 လို့ သတ်မှတ်လို့ ရတယ်ဆိုရင် y2 က w0 နဲ့ ညီသွားပါမယ်။ နောက်ကျန်တဲ့ အမှတ် ၂ ခုကနေ ညီမျှခြင်း နှစ်ကြောင်းပဲ ရှင်းဖို့ လိုပါတော့တယ်။

y1=y2w1+w2

y3=y2+w1+w2

[1111][w1w2]=[y1y2y3y2]

[w1w2]=[0.50.50.50.5][y1y2y3y2]


နောက် အောက်ကအတိုင်းရလာပါမယ်။

w0=y2

w1=0.5(y1y2)+0.5(y3y2)

w2=0.5(y1y2)+0.5(y3y2)


အထက်ကနည်းတွေကို MatLab နဲ့စမ်းကြည့်ထားတာကို အောက်က ကုဒ်တွေမှာ တွေ့နိုင်ပါတယ်။
%-------------------------------------------------------------------------
clc;
close all;
clear all;
%-------------------------------------------------------------------------
% y= w0 + w1*x + w2* x^2;
%-------------------------------------------------------------------------
%Got x and y
x=[-1 0 1]';
Wo=[4 3 2]';
y=Wo(1)+Wo(2)*x+Wo(3).*x.*x;

%-------------------------------------------------------------------------
%Approach 1
%Polynomial regression of order 2
%For n=3
S1=3;
Sx=sum(x);
Sx2=sum(x.*x);
Sx3=sum(x.*x.*x);
Sx4=sum(x.*x.*x.*x);
Sy=sum(y);
Syx=sum(y.*x);
Syx2=sum(y.*x.*x);

P=[S1 Sx Sx2; Sx Sx2 Sx3; Sx2 Sx3 Sx4];
B=[Sy Syx Syx2]';
%P1=P^(-1);
W1=P\B

%-------------------------------------------------------------------------
%Approach 2
%Linear equations
A=[1 x(1) x(1)*x(1);1 x(2) x(2)*x(2); 1 x(3) x(3)*x(3)];
W2=A\y
%-------------------------------------------------------------------------
%Approach 3
%Only 2 linear equations
w0=y(2);
w1=-0.5*( y(1)- y(2))+0.5*( y(3)- y(2));
w2=0.5*( y(1)- y(2))+0.5*(y(3)- y(2));
W3=[w0 w1 w2]'
%-------------------------------------------------------------------------
အောက်ကပုံမှာ ဒီနည်းကို သုံးလို့ရတဲ့ ရလဒ် (အပြာ) နဲ့ ပုံမှန် zero order hold သုံးရင် ရမယ့် ရလဒ် (အနက်) တို့ကို ယှဉ်ပြထားပါတယ်။ ဒီနည်းက ပိုပြီး ညက်ညော ချောမွေ့တဲ့ ရလဒ်ကို ရပေမယ့် one sample delay ရှိသွားတာကိုတော့ သတိထားဖို့ လိုပါတယ်။
ဒီနည်းလမ်းကို LabVIEW မှာ C code သုံးပြီး လုပ်ထားတာကို အောက်ကပုံမှာ တွေ့နိုင်ပါတယ်။
ပထမ နှစ်ခုမှာ 3x3 matrix ကို inverse ရှာဖို့ လိုတဲ့အတွက် inverse ရှာတဲ့ C program လေးတစ်ခုကို ရေးပြီး စမ်းကြည့်ထားပါတယ်။
#include
#include
main()
{
    float M[3][3]={{3,0,2},{0,2,0},{2,0,2}}; //initialize a 3x3 matrix
    float N[3][3]={{0,0,0},{0,0,0},{0,0,0}}; //allocate for inverse
    int i,j;
    float d;
    //-------------------------------------------------------------------------
    N[0][0]=(M[1][1]*M[2][2]-M[2][1]*M[1][2]);
    N[1][0]=-(M[1][0]*M[2][2]-M[2][0]*M[1][2]);
    N[2][0]=(M[1][0]*M[2][1]-M[1][1]*M[2][0]);
    d=M[0][0]*N[0][0]+M[0][1]*N[1][0]+M[0][2]*N[2][0];
    N[0][0]/=d;
    N[1][0]/=d;
    N[2][0]/=d;
    N[0][1]=-(M[0][1]*M[2][2]-M[0][2]*M[2][1])/d;
    N[1][1]=(M[0][0]*M[2][2]-M[0][2]*M[2][0])/d;
    N[2][1]=-(M[0][0]*M[2][1]-M[0][1]*M[2][0])/d;
    N[0][2]=(M[0][1]*M[1][2]-M[0][2]*M[1][1])/d;
    N[1][2]=-(M[0][0]*M[1][2]-M[0][2]*M[1][0])/d;
    N[2][2]=(M[0][0]*M[1][1]-M[0][1]*M[1][0])/d;
    //-------------------------------------------------------------------------
    //print 3x3 matrix
    for(i=0;i<3;i++)
    {
        for(j=0;j<3;j++) printf("%3.4f ",N[i][j]);
        printf("\n");
    }
    getch();
    return 0;
}

No comments:

Post a Comment